An Efficient Elastic Net with Regression Coefficients Method for Variable Selection of Spectrum Data
نویسندگان
چکیده
Using the spectrum data for quality prediction always suffers from noise and colinearity, so variable selection method plays an important role to deal with spectrum data. An efficient elastic net with regression coefficients method (Enet-BETA) is proposed to select the significant variables of the spectrum data in this paper. The proposed Enet-BETA method can not only select important variables to make the quality easy to interpret, but also can improve the stability and feasibility of the built model. Enet-BETA method is not prone to overfitting because of the reduction of redundant variables realized by elastic net method. Hypothesis testing is used to further simplify the model and provide a better insight into the nature of process. The experimental results prove that the proposed Enet-BETA method outperforms the other methods in terms of prediction performance and model interpretation.
منابع مشابه
The Multiple Bayesian Elastic Net
We propose the multiple Bayesian elastic net (abbreviated as MBEN), a new regularization and variable selection method. High dimensional and highly correlated data are commonplace. In such situations, maximum likelihood procedures typically fail—their estimates are unstable, and have large variance. To address this problem, a number of shrinkage methods have been proposed, including ridge regre...
متن کاملLogistic regression with weight grouping priors
A generalization of the commonly used Maximum Likelihood based learning algorithm for the logistic regression model is considered. It is well known that using the Laplace prior (L1 penalty) on model coefficients leads to a variable selection effect, when most of the coefficients vanish. It is argued that variable selection is not always desirable; it is often better to group correlated variable...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملSelf-adaptive Lasso and its Bayesian Estimation
In this paper, we proposed a self-adaptive lasso method for variable selection in regression problems. Unlike the popular lasso method, the proposed method introduces a specific tuning parameter for each regression coefficient. We modeled self-adaptive lasso in a Bayesian framework and developed an efficient Gibbs sampling algorithm to automatically select these tuning parameters and estimate t...
متن کاملApplying Penalized Binary Logistic Regression with Correlation Based Elastic Net for Variables Selection
Reduction of the high dimensional classification using penalized logistic regression is one of the challenges in applying binary logistic regression. The applied penalized method, correlation based elastic penalty (CBEP), was used to overcome the limitation of LASSO and elastic net in variable selection when there are perfect correlation among explanatory variables. The performance of the CBEP ...
متن کامل